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Abstract 

The programme has been developed for investigation of the dyna- 

mical behaviour of calorimetric equipments and permits a numeri- 

cal calculation of the equation of the heat conduction for arbi- 

tary initial and boundary conditions and an arbitary distribution 

of heat sources. In order to derive a set of discrete linear 

difference equations from the partial differential equation, which 

is necessary for the numerical calculation, the sample is consi- 

dered as a network of points, which are connected to each other 

by conducting rods. Although a rectangular lattice has been 

chosen as a network, curved surfaces can be treated. It has been 

taken care, that the number of input data is as low as possible. 

The programme is written in STANDARD FORTRAN and takes 45 K and 

0,2 sec for calculating the shape of temperature at 1100 points. 

I. Introduction 

A detailed understanding of the dynamical behaviour of calorime- 

tric measuring equipments requires investigating transport of 

heat inside those systems, because this is the way by which the 

information about a thermal event in the sample propagates to 

that place, where it is measured. Thus a computer programme 

applying a well known method of numerical calculation (Dusin- 

berre,1949, Schneider, 1957, Grigull, Sandner, 1979) 
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has been developped in combination with other auxiliary pro- 

grammes,which help to reduce the large number of input data or 

check the solution with respect to criteria of symmetry or refer 

to a graphical evaluation. 

Most programmes are written in STANDARD FORTRAN, so they will be 

suitable for a great deal of computers. 

2. Algorithm of numerical calculation of transport 

Before explaining the algorithm we shall briefly derive the 

equation of heat conduction, because this will lead to an easier 

understanding of the structure of the programme and why auxilia- 

ry programmes are necessary. 

2.1 Equation of heat conduction 

We start by the balance equation refering to a certain region 

i of a medium 

~j d A +_ lq (r,t)_ dV = I c (r)_ ~T~t(x,t) dV 

A i V i V i 

(2,1) 

where Ai, V i denote the surface area and the volume of the region 

i, respectively, ~ the flow density of heat, ~ (~,t) the density 

of heat production describing the distribution of heat sources 

and c (~) the(volume) specific heat capacity. Inserting the well- 

known phenomenologicai equation (1. Fourier's law) 

=~'VT (2,2) 

yields with the help of the lemma of Gauss 

(~VT) + q (~,t) = c (r) ~T (~,t) (2,3) 
8t 



This leads to the well known equation of heat conduction 

s 

~ 2 T (r,t) + q (r,t) = c (r) 9T (r,t) (2,4) 
-- -- -- 8t 

provided thatthe medium is homogeneousvotherwise the expression 

~(r) • V T (r,t)+ ~V 2 T (r,t)+ q (r,t) = c (r) 
9T (r,t) 

9t 
(2,5) 

is obtained. 
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2__~.2 Algorithm of numerical solution 

A numerical method is not able to resolve (2,4), (2,5) directly- 

instead of the partial differential equation a set of corres- 

ponding discrete difference equation is resolved. Thus the conti- 

nuous medium is supposed to be replaced by a network of points 

i (i = I,...,M) having the capacity of the cell i,which are 

connected With the neighboured points by conducting rods i, k 

(i = I,...,M, kneighboured to i) each having the coefficient of 

conductivity Lik. The network chosen here is a rectangular 

lattice. The set of discrete difference equations is obtained 

immediately from the balance equation (2,1), if one replaces the 

partial derivative 9T/@t by ratio 

N+I N 
%T (r,t) . Ti - Ti (2,6) 

t ~ A t 

where the subscript, denotes the i-th cell and the superscript N, 

N+I refer to the actual time t and the following time t + ~t, 

respectively. Thus the set of difference equation 

N N TiN+I - T. N 
• l (2,7) 

Ji k + Qi = Ci ~t 

k neighboured 
to i 

is obtained. Qi' Ci denote the total production of heat 
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Qi = q (r,t) dV 

V. 
l 

(2,8 

and the total capacity 

r 
C | c (r) dV (2,9 
i J 

V. 
1 

r e s p e c t i v e l y .  J N are the actual flows from k to i - they are ik 

described by t h e  p h e n o m e n o l o g i c a l  e x p r e s s i o n  

j N N T N 
ik = Lik (T - i ), (i = I,...,M; k neighboured to i) (2,1( 

where the symmetrical matrix L denotes the coefficients of con- 
= 

ductivity of the rods of the network. According to the symmetry 

is represented by the conductivity coeffi- already mentioned Lik 

cients L i, L k of the cells i,k 

Inserting into (2,7) yields the algorithm 

~t ~ TkN + T N (I - ~ i + C i i ~t s ) at Oi = T N÷I 
C~. Lik i l 

k neighboured to i 
(2,12 

= 1,...,m; N = 0,...) 

m denotes all points, the temperatures of which have to be cal- 

culated Consequently there are M-m points, the temperatures of 

which are given as boundary condition), and S i is the sum 

Si = ~ Lik ~,131 

k neighboured to i ~ = 1,...,m) 
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3. Pro@rammes and Subroutines 

The logical structure of the programme can be devided into three 

parts. The first one is concerned with reading the input data 

such as the material propertiesfthe geometrical form of the sur- 

face and of the inhomogeneities,the initial and boundary condi- 

tions. In the second part all those quantities, which do not 

depend on time, are calculated. Finally the third part determines 

the numerical solution. According to the algorithm (2,12) it con- 

sists of a loop, which is interrupted after having reached a value 

of N sufficiently large. Fig. I is a flow chart of the logical 

structure. 

3.1 Subroutines PROBE TBEGIN, QUELL, TBEK 

The subroutinies TBEGIN TBEK determine the initial and boun- 

dary conditions. QUELL the positions and strengths if the heat 

sources. PROBE is a special subroutine concerning the geometri- 

cal form of the sample. It permits reducing the number of input 

data in order to economize the user's work and to avoid errors. 

The data (positions and material parameters) of the surface cells 

are read at first, then the properties of all cells in the bulk 

are determined and finally inner inhomogeneities are read. Thus 

only the data of the surface have to be given, which are less 

than those of the whole sample. This subroutine operates in com- 

bination with additional auxiliary programmes,which permit an 

additional reduction. 

3.2 Subroutines DELTIM, MATRIX, OUTPUT, NACHBR, REKURS 

DELTIM calculates the limit of stability of the numerical 

solution (Dusinberre 1949, Schneider 1957). This is the maximum 
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Fig. 1: Flow chart of the main programme. The names in capital 

letters refer to the subroutines 



value of ~t, where the numerical solution still converges. It 

is given by 

£ t max = max ( 3 , 1 )  

MATRIX d e t e r m i n e s  t h e  d i a g o n a l  a n d  t h e  o f f - d i a g o n a l  e l e m e n t s  o f  

( 2 , 1 2 ) ,  OUTPUT i s  n e c e s s a r y  f o r  c o n t r o l l i n g  t h e  o u t p u t ,  NACHBR 

s t o r e s  t h e  i n d i c e s  o f  t h e  n e i g h b o u r s  o f  e a c h  c e l l .  T h e s e  f o u r  

s u b r o u t i n e s  a r e  n o t  r e a l l y  r e q u i r e d  f o r  a s o l u t i o n  b u t  t h e y  h e l p  

reducing the time of calculation. REKURS calculates the new 

temperatures from the old ones by (2,12). 
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3.3. Auxilary pro@rammes 

As already mentioned the network representing the continuous 

sample has been chosen as a rectangular lattice. This lattice, 

however, is not very suitable, if there are surfaces which are 

not planes but which are curved. The capacity is given by the 

integral (2,9) the conductivity coefficients x,y,z by a similar 
1 

integral, which is derived by the following consideration: 

Suppose that the curved surface is given by an equation 

x = x (y,z) (3,2) 
s s 

In fig. 2 a general case of a surface cell is shown. In order 

to get the coefficient of conductivity ~ x i ' we now assume a 

steady temperature T s being at the surface (3,2) and T 1 being at 

the left wall i • ~x. The phenomenologicai equation is according 

to (2,2) 

Jx = 4 " ~T (3,3) 
~x 

Integration yields with the help of stationarity 
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Z Y 

I AX (I+I) AX X 

Fig. 2: Surface cell, which is intersected by a curved surface 

Xs(Y,Z,). 

Xs (Y,Z) 

I Jx dx = JX " (Xs(Y,Z) - i " AX) = (T_ - T. ) 9,. 

i • aX ~T 

(3,4) 

Jx =~ a~ • I 
X s (y,z) - i • ~X 

(3,5) 

The flow across the total left wall is given by 
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I~ dydz ~ T (3,6) 
Jx = I x s (y,z) - i ; ~x 

Consequently ~i x is obtained as 

ff dydz 
ix = ~" x s (y,z) - i ~ X (3,7) 

The conductivity coefficients refering to the other directions 

are calculated by an analogous method. 

An analytical evaluation of the integrals (2,9), (3,7) has been 

carried out for a cylindrical surface. It leads to complicated 

expressions, which have been programmed in the subroutine OBERFL 

required for generating the input data of the subroutine PROBE. 

Additional plot programmes have been worked out, the first one of 

which concerns a graphical representation of the input data. This 

is necessary because there is a lot of possibilities of making 

errors in calculating the capacities and the conductivity coef- 

ficients, if the structure of the sample is complicated. The 

second one plots the numerical solution T(t) of a number of points, 

which can be chosen arbitarily. 

4. Transport of heat in a model of calorimetric measuring 

equipment 

AS an example of numerical solution a sample shown ~n fig. 3, 

which represents one fourth of a model of a calorimetric measuring 

equipment, is treated. Since the planes y = x = o are mirror 

planes with respect to the complete sample, these planes have to 

be mirror planes with respect to the solution too. Thus it is 
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sufficient to calculate one fourth of the whole sample, which i 

adiabatically isolated at x = y = o. This symmetry consideratio 

helps to save time of calculation and to reduce the amount of 

storage. The sample consists of two parts: a heater of cement w 

a pot of aluminium upon it. The heater is heated by a pulse of 

100 W lasting I s. The coefficient of heat transition between t 

-I -2 
heater and the bottom of the pot amounts to 400 W K m . On t 

bottom of the pot is lying a cover consisting of aluminium its 

corresponding coefficient of heat transition amounts to 1OO W 

K -I m -2 0 I 2 3 4 
,n I I I I Di 

-";  "- x~,x ' ? ..... i >.. 
2 i 

i i 

o i I , 
, I 

k 
• w/////////~ 

L ± : ~[fff'~'////A 
=::::::::un%:: ; ===================================== 
WHHHW~HIH///HNZHIH¢I 1 
V/////J//~/////////,r///////A I 

~////~'~///'////~V///H'z///~'////////f"////Z I 
Y~////I I/M/////////~'///////I 
W/X/// ///X/////////n'///////A 

F i g .  3 :  O n e  f o u r t h  o f  a m o d e l  o f  c a l o r i m e t r i c  m e a s u r i n g  e q u i p m e  

A l l  n u m b e r s  a r e  g i v e n  i n  mra. T h e  m o d e l  i s  t e n  t i m e s  a s  

large as a realistic original equipment. 

The following figures show diagrams of the solution at various 

points. It should be realized that the result does not reveal a 

surprising properties - the behaviour is quite plausible. 
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Fig. 4: Temperatures at the center (i = o, j = o) of the heater. 

The numbers of the curves denote the value of the ver- 

tical coordinate k. k = o for example is the ground of 

the block of cement, the layers k = 2, k = 3 contain the 

electrical heater, k = 6 is the bottom of the pot, 

k = 7 the cover 
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Fig. 5: Temperatures of the bottom of the pot (K=6) in y-direc- 

tion at i = o. The numbers denote the values of j. 

5. Final remarks 

Numerical methods of resolving partial differential equations 

are well known. Nevertheless the programming takes a lot of time 

and work, because many problems have to be resolved in order to 

save time of calculation and with respect to an economic use of 

storage. Thus the number of programmes and subroutines amounts 

to 30 in the present form of the software package. Additionally 

the routines should be well understandable by reading the 

listings, i.e. they should include enough comments - unfortuna- 

tely we have not yet carried out this work. 



A second problem is the great deal of input data concerning the 

geometrical form of the sample - imagine that only one mistake 

in the set of data will produce a solution totally wrong. The 

way of avoiding these errors, we have chosen here is not to 

type the data directly, but to type programmes which calculate 

the input data. The reason is simple: it is easier to work out a 

logical structure and to write the corresponding programme than 

to type the great amount of data without errors. Errors in typing 

the programme will be realized by the compiler. Furthermore the 

concept of giving the position of the surface cells,(subroutine 

PROBE) helps reducing the number of input data. 

The third problem was a suitable handling of a curved surface. 

Of course choosing sufficiently small lattice constants would be 

one way of an approximate description of these surfaces but this way 

is not realistic because of the large time of calculation and the 

large amount of storage. Another way is the transformation to non- 

Cartesian coordinates, i.e. the use of a curved lattice. Indead 

this method is mathematically elegant, if these coordinates can 

be used for the whole sample. If there are several parts of sample, 

each requiring another kind of coordinates, which was the case for 

our example, uniform coordinates have to be chosen. For the sake 

of simplicity we used Cartesian ones. Curved surfaces are taken 

into account by the method previously mentioned. 

Finally it should be mentioned that transport by radiation is not 

negligeably small particularly at higher temperatures. So a rea- 

listic treatment of a calorimetric measuring equipment will re- 

quire extending the programmes to taking into account this pheno- 

menon. Indeed we are preparing this task, which will be no serious 

problem, since the numerical method is based exclusively to upon 
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balance equations holding even for nonlinear phenomena of trans- 

port. 
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